# -*- coding: utf-8 -*- """ Created on 2018-06-19 17:17 --------- @summary: item 管理器, 负责缓冲添加到数据库中的item, 由该manager统一添加。防止多线程同时访问数据库 --------- @author: Boris @email: boris_liu@foxmail.com """ import importlib import threading from queue import Queue import feapder.setting as setting import feapder.utils.tools as tools from feapder.db.redisdb import RedisDB from feapder.dedup import Dedup from feapder.network.item import Item, UpdateItem from feapder.pipelines import BasePipeline from feapder.pipelines.mysql_pipeline import MysqlPipeline from feapder.utils import metrics from feapder.utils.log import log MAX_ITEM_COUNT = 5000 # 缓存中最大item数 UPLOAD_BATCH_MAX_SIZE = 1000 MYSQL_PIPELINE_PATH = "feapder.pipelines.mysql_pipeline.MysqlPipeline" class ItemBuffer(threading.Thread): dedup = None __redis_db = None def __init__(self, redis_key, task_table=None): if not hasattr(self, "_table_item"): super(ItemBuffer, self).__init__() self._thread_stop = False self._is_adding_to_db = False self._redis_key = redis_key self._task_table = task_table self._items_queue = Queue(maxsize=MAX_ITEM_COUNT) self._table_request = setting.TAB_REQUSETS.format(redis_key=redis_key) self._table_failed_items = setting.TAB_FAILED_ITEMS.format( redis_key=redis_key ) self._item_tables = { # 'item_name': 'table_name' # 缓存item名与表名对应关系 } self._item_update_keys = { # 'table_name': ['id', 'name'...] # 缓存table_name与__update_key__的关系 } self._pipelines = self.load_pipelines() self._have_mysql_pipeline = MYSQL_PIPELINE_PATH in setting.ITEM_PIPELINES self._mysql_pipeline = None if setting.ITEM_FILTER_ENABLE and not self.__class__.dedup: self.__class__.dedup = Dedup( to_md5=False, **setting.ITEM_FILTER_SETTING ) # 导出重试的次数 self.export_retry_times = 0 # 导出失败的次数 TODO 非air爬虫使用redis统计 self.export_falied_times = 0 @property def redis_db(self): if self.__class__.__redis_db is None: self.__class__.__redis_db = RedisDB() return self.__class__.__redis_db def load_pipelines(self): pipelines = [] for pipeline_path in setting.ITEM_PIPELINES: module, class_name = pipeline_path.rsplit(".", 1) pipeline_cls = importlib.import_module(module).__getattribute__(class_name) pipeline = pipeline_cls() if not isinstance(pipeline, BasePipeline): raise ValueError(f"{pipeline_path} 需继承 feapder.pipelines.BasePipeline") pipelines.append(pipeline) return pipelines @property def mysql_pipeline(self): if not self._mysql_pipeline: module, class_name = MYSQL_PIPELINE_PATH.rsplit(".", 1) pipeline_cls = importlib.import_module(module).__getattribute__(class_name) self._mysql_pipeline = pipeline_cls() return self._mysql_pipeline def run(self): # step 1 开始 self._thread_stop = False while not self._thread_stop: # 爬虫不停止,就一直循环刷新 self.flush() tools.delay_time(1) self.close() def stop(self): self._thread_stop = True self._started.clear() def put_item(self, item): # step 存储数据的入口 将需要存储的数据放入数据管道队列 if isinstance(item, Item): # 入库前的回调 if item.item_name == "ListItem": # 测试框架有用,对listitem不进行存储,正式框架没有这个判断 return item.pre_to_db() # print(item) if item.save: # 根据save字段,判断该条信息是否存储 self._items_queue.put(item) else: self._items_queue.put(item) def flush(self): try: items = [] update_items = [] requests = [] callbacks = [] items_fingerprints = [] data_count = 0 while not self._items_queue.empty(): # step 2 数据管道队列不为空时时 不等待直接取值 data = self._items_queue.get_nowait() # 队列的 不等待直接取值方法,类似get data_count += 1 # data 分类 if callable(data): callbacks.append(data) elif isinstance(data, UpdateItem): # 更新型数据,走更新管道,采集框架只存不更新,可以忽略不看 update_items.append(data) elif isinstance(data, Item): items.append(data) if setting.ITEM_FILTER_ENABLE: # item去重,对于当前框架,无效,不看 items_fingerprints.append(data.fingerprint) else: # request-redis requests.append(data) if data_count >= UPLOAD_BATCH_MAX_SIZE: # step 3 需要存储的数据,达到一定数量后,统一存储 self.__add_item_to_db( items, update_items, requests, callbacks, items_fingerprints ) items = [] update_items = [] requests = [] callbacks = [] items_fingerprints = [] data_count = 0 if data_count: # step 3 管道为空后,将剩余的数据,统一存储 self.__add_item_to_db( items, update_items, requests, callbacks, items_fingerprints ) except Exception as e: log.exception(e) def get_items_count(self): return self._items_queue.qsize() def is_adding_to_db(self): return self._is_adding_to_db def __dedup_items(self, items, items_fingerprints): """ 去重 @param items: @param items_fingerprints: @return: 返回去重后的items, items_fingerprints """ if not items: return items, items_fingerprints is_exists = self.__class__.dedup.get(items_fingerprints) is_exists = is_exists if isinstance(is_exists, list) else [is_exists] dedup_items = [] dedup_items_fingerprints = [] items_count = dedup_items_count = dup_items_count = 0 while is_exists: item = items.pop(0) items_fingerprint = items_fingerprints.pop(0) is_exist = is_exists.pop(0) items_count += 1 if not is_exist: dedup_items.append(item) dedup_items_fingerprints.append(items_fingerprint) dedup_items_count += 1 else: dup_items_count += 1 log.info( "待入库数据 {} 条, 重复 {} 条,实际待入库数据 {} 条".format( items_count, dup_items_count, dedup_items_count ) ) return dedup_items, dedup_items_fingerprints def __pick_items(self, items, is_update_item=False): """ 将每个表之间的数据分开 拆分后 原items为空 @param items: @param is_update_item: @return: """ datas_dict = { # 'table_name': [{}, {}] } while items: item = items.pop(0) # 取item下划线格式的名 # 下划线类的名先从dict中取,没有则现取,然后存入dict。加快下次取的速度 item_name = item.item_name table_name = self._item_tables.get(item_name) if not table_name: table_name = item.table_name self._item_tables[item_name] = table_name if table_name not in datas_dict: datas_dict[table_name] = [] datas_dict[table_name].append(item.to_dict) if is_update_item and table_name not in self._item_update_keys: self._item_update_keys[table_name] = item.update_key return datas_dict def __export_to_db(self, table, datas, is_update=False, update_keys=()): # step 3.1.1 打点 记录总条数及每个key情况 self.check_datas(table=table, datas=datas) for pipeline in self._pipelines: # setting 配置的piplines方法 if is_update: # 更新方法 不看 if table == self._task_table and not isinstance( pipeline, MysqlPipeline ): continue if not pipeline.update_items(table, datas, update_keys=update_keys): log.error( f"{pipeline.__class__.__name__} 更新数据失败. table: {table} items: {datas}" ) return False else: if not pipeline.save_items(table, datas): # step 3.1.2 调用pipline的 save_items 方法 log.error( f"{pipeline.__class__.__name__} 保存数据失败. table: {table} items: {datas}" ) return False # 若是任务表, 且上面的pipeline里没mysql,则需调用mysql更新任务 if not self._have_mysql_pipeline and is_update and table == self._task_table: if not self.mysql_pipeline.update_items( table, datas, update_keys=update_keys ): log.error( f"{self.mysql_pipeline.__class__.__name__} 更新数据失败. table: {table} items: {datas}" ) return False return True def __add_item_to_db( self, items, update_items, requests, callbacks, items_fingerprints ): export_success = True self._is_adding_to_db = True # 去重 item去重,不看 if setting.ITEM_FILTER_ENABLE: items, items_fingerprints = self.__dedup_items(items, items_fingerprints) # step 分捡 将每个表之间的数据分开 拆分后 原items为空 items_dict = self.__pick_items(items) update_items_dict = self.__pick_items(update_items, is_update_item=True) # item批量入库 failed_items = {"add": [], "update": [], "requests": []} while items_dict: table, datas = items_dict.popitem() log.debug( """ -------------- item 批量入库 -------------- 表名: %s datas: %s """ % (table, tools.dumps_json(datas, indent=16)) ) if not self.__export_to_db(table, datas): # step 3.1 导出到数据库 export_success = False failed_items["add"].append({"table": table, "datas": datas}) # 执行批量update while update_items_dict: table, datas = update_items_dict.popitem() log.debug( """ -------------- item 批量更新 -------------- 表名: %s datas: %s """ % (table, tools.dumps_json(datas, indent=16)) ) update_keys = self._item_update_keys.get(table) if not self.__export_to_db( table, datas, is_update=True, update_keys=update_keys ): export_success = False failed_items["update"].append({"table": table, "datas": datas}) if export_success: # step 3.2 保存成功后,执行的执行回调 while callbacks: try: callback = callbacks.pop(0) callback() except Exception as e: log.exception(e) # step 删除做过的request if requests: self.redis_db.zrem(self._table_request, requests) # 去重入库 不走这个去重 if setting.ITEM_FILTER_ENABLE: if items_fingerprints: self.__class__.dedup.add(items_fingerprints, skip_check=True) else: # step 3.2 保存失败后,执行的执行回调 failed_items["requests"] = requests if self.export_retry_times > setting.EXPORT_DATA_MAX_RETRY_TIMES: if self._redis_key != "air_spider": # 失败的item记录到redis self.redis_db.sadd(self._table_failed_items, failed_items) # 删除做过的request if requests: self.redis_db.zrem(self._table_request, requests) log.error( "入库超过最大重试次数,不再重试,数据记录到redis,items:\n {}".format( tools.dumps_json(failed_items) ) ) self.export_retry_times = 0 else: tip = ["入库不成功"] if callbacks: tip.append("不执行回调") if requests: tip.append("不删除任务") exists = self.redis_db.zexists(self._table_request, requests) for exist, request in zip(exists, requests): if exist: self.redis_db.zadd(self._table_request, requests, 300) if setting.ITEM_FILTER_ENABLE: tip.append("数据不入去重库") if self._redis_key != "air_spider": tip.append("将自动重试") tip.append("失败items:\n {}".format(tools.dumps_json(failed_items))) log.error(",".join(tip)) self.export_falied_times += 1 if self._redis_key != "air_spider": self.export_retry_times += 1 if self.export_falied_times > setting.EXPORT_DATA_MAX_FAILED_TIMES: # 报警 msg = "《{}》爬虫导出数据失败,失败次数:{},请检查爬虫是否正常".format( self._redis_key, self.export_falied_times ) log.error(msg) tools.send_msg( msg=msg, level="error", message_prefix="《%s》爬虫导出数据失败" % (self._redis_key), ) self._is_adding_to_db = False def check_datas(self, table, datas): """ 打点 记录总条数及每个key情况 @param table: 表名 @param datas: 数据 列表 @return: """ metrics.emit_counter("total count", len(datas), classify=table) for data in datas: for k, v in data.items(): metrics.emit_counter(k, int(bool(v)), classify=table) def close(self): # 调用pipeline的close方法 for pipeline in self._pipelines: try: pipeline.close() except: pass