sample_data_export_new.py 1.7 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758
  1. from pymongo import MongoClient
  2. def sample_data(N):
  3. # db = MongoClient('172.20.45.129', 27002, unicode_decode_error_handler="ignore").data_quality
  4. db = MongoClient('mongodb://127.0.0.1:27087/', unicode_decode_error_handler="ignore",directConnection=True).jyqyfw # 清洗库
  5. coll_user = db["usermail_Unicom_1_2"]
  6. filter_condition = {
  7. "$or": [
  8. {"tag": 1},
  9. {"tag": 2}
  10. ]
  11. }
  12. # 获取所有站点及其文档数
  13. site_list = {}
  14. site_count = coll_user.aggregate([
  15. {"$match": filter_condition},
  16. {"$group": {"_id": "$site", "count": {"$sum": 1}}},
  17. {"$sort": {"count": -1}}
  18. ])
  19. for item in site_count:
  20. site_list[item["_id"]] = item["count"]
  21. total_docs = sum(site_list.values())
  22. remaining = N
  23. marked_count = 0
  24. for site, count in site_list.items():
  25. if remaining <= 0:
  26. break
  27. # 计算该站点应分配的样本数
  28. num = max(1, round(N * count / total_docs))
  29. num = min(num, remaining)
  30. print(f"Processing site: {site} - Allocating {num} samples")
  31. # 使用随机抽样
  32. pipeline = [
  33. {"$match": {"site": site, **filter_condition}},
  34. {"$sample": {"size": num}},
  35. {"$project": {"_id": 1}}
  36. ]
  37. sampled_ids = [doc["_id"] for doc in coll_user.aggregate(pipeline)]
  38. if not sampled_ids:
  39. continue
  40. update_result = coll_user.update_many(
  41. {"_id": {"$in": sampled_ids}},
  42. {"$set": {"mark": 1}}
  43. )
  44. marked_count += update_result.modified_count
  45. remaining -= update_result.modified_count
  46. print(f"Total marked documents: {marked_count}")
  47. sample_data(2000)