12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758 |
- from pymongo import MongoClient
- def sample_data(N):
- db = MongoClient('172.20.45.129', 27002, unicode_decode_error_handler="ignore").data_quality
- # db = MongoClient('mongodb://127.0.0.1:27087/', unicode_decode_error_handler="ignore",directConnection=True).jyqyfw # 清洗库
- coll_user = db["missing_fid_attachments"]
- # filter_condition = {"tag_1": 1}
- # 获取所有站点及其文档数
- site_list = {}
- site_count = coll_user.aggregate([
- # {"$match": filter_condition},
- {"$group": {"_id": "$site", "count": {"$sum": 1}}},
- {"$sort": {"count": -1}}
- ])
- for item in site_count:
- site_list[item["_id"]] = item["count"]
- total_docs = sum(site_list.values())
- remaining = N
- marked_count = 0
- for site, count in site_list.items():
- if remaining <= 0:
- break
- # 计算该站点应分配的样本数
- num = max(1, round(N * count / total_docs))
- num = min(num, remaining)
- print(f"Processing site: {site} - Allocating {num} samples")
- # 使用随机抽样
- pipeline = [
- {"$match": {
- "site": site,
- # **filter_condition
- }
- },
- {"$match": {"site": site}},
- {"$sample": {"size": num}},
- {"$project": {"_id": 1}}
- ]
- sampled_ids = [doc["_id"] for doc in coll_user.aggregate(pipeline)]
- if not sampled_ids:
- continue
- update_result = coll_user.update_many(
- {"_id": {"$in": sampled_ids}},
- {"$set": {"flag": 1}}
- )
- marked_count += update_result.modified_count
- remaining -= update_result.modified_count
- print(f"Total marked documents: {marked_count}")
- sample_data(8000)
|