123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226 |
- from pymongo import MongoClient
- from datetime import datetime, timedelta
- import pandas as pd
- import openpyxl
- # 数据入库量及数据监控时效 导出execl
- # MongoDB连接配置
- host = '192.168.3.149'
- port = 27180
- dbname = 'data_quality'
- collection_name = 'statistics'
- # 创建MongoDB连接
- client = MongoClient(host, port)
- db = client[dbname]
- collection = db[collection_name]
- # 获取当前时间和一周前的时间
- end_time = datetime.now()
- start_time = end_time - timedelta(weeks=1)
- # 将datetime转换为Unix时间戳(整数类型,去掉小数部分)
- start_timestamp = int(start_time.timestamp())
- end_timestamp = int(end_time.timestamp())
- # 输出调试信息:检查开始时间和结束时间
- print("Start time:", start_time)
- print("End time:", end_time)
- print("Start timestamp:", start_timestamp)
- print("End timestamp:", end_timestamp)
- # ----------------- 第一个Sheet: 断流监控_mongo库 -------------------
- # 查询过去一周的数据(断流监控_mongo库)
- pipeline_mongo = [
- {
- "$match": {
- "$or": [
- {"bidding.timestamp": {"$gte": start_timestamp, "$lt": end_timestamp}},
- {"bidding_ai.timestamp": {"$gte": start_timestamp, "$lt": end_timestamp}},
- {"connections.timestamp": {"$gte": start_timestamp, "$lt": end_timestamp}},
- {"nzj.timestamp": {"$gte": start_timestamp, "$lt": end_timestamp}},
- {"bidding_fragment.timestamp": {"$gte": start_timestamp, "$lt": end_timestamp}}
- ]
- }
- },
- {
- "$limit": 5 # 限制查询返回的结果为前5条数据,便于调试
- }
- ]
- # 获取符合条件的数据
- data_mongo = list(collection.aggregate(pipeline_mongo))
- # 初始化MongoDB字段统计数据
- bidding_count = 0
- bidding_ai_count = 0
- connections_count = 0
- nzj_count = 0
- bidding_fragment_data = {
- "情报_法务": 0,
- "情报_财务审计": 0,
- "情报_招标代理": 0,
- "情报_管理咨询": 0,
- "情报_保险": 0,
- "情报_工程设计咨询": 0,
- "情报_安防": 0,
- "情报_印务商机": 0,
- "情报_环境采购": 0,
- "情报_家具招投标": 0
- }
- # 统计MongoDB数据
- for doc in data_mongo:
- if 'bidding' in doc:
- bidding_count += doc['bidding'].get('count', 0)
- if 'bidding_ai' in doc:
- bidding_ai_count += doc['bidding_ai'].get('count', 0)
- if 'connections' in doc:
- connections_count += doc['connections'].get('count', 0)
- if 'nzj' in doc:
- nzj_count += doc['nzj'].get('count', 0)
- if 'bidding_fragment' in doc:
- for key, value in doc['bidding_fragment'].get('count', {}).items():
- if key in bidding_fragment_data:
- bidding_fragment_data[key] += value
- # ----------------- 第二个Sheet: 断流监控—es -------------------
- # 查询过去一周的数据(断流监控—es)
- pipeline_es = [
- {
- "$match": {
- "$or": [
- {"es_bidding.timestamp": {"$gte": start_timestamp, "$lt": end_timestamp}},
- {"es_bidding_ai.timestamp": {"$gte": start_timestamp, "$lt": end_timestamp}},
- {"es_nzj.timestamp": {"$gte": start_timestamp, "$lt": end_timestamp}},
- {"es_bidding_fragment.timestamp": {"$gte": start_timestamp, "$lt": end_timestamp}}
- ]
- }
- },
- {
- "$limit": 5 # 限制查询返回的结果为前5条数据,便于调试
- }
- ]
- # 获取符合条件的数据
- data_es = list(collection.aggregate(pipeline_es))
- # 初始化ES字段统计数据
- es_bidding_count = 0
- es_bidding_ai_count = 0
- es_nzj_count = 0
- es_bidding_fragment_data = {
- "情报_法务": 0,
- "情报_财务审计": 0,
- "情报_招标代理": 0,
- "情报_管理咨询": 0,
- "情报_保险": 0,
- "情报_工程设计咨询": 0,
- "情报_安防": 0,
- "情报_印务商机": 0,
- "情报_环境采购": 0,
- "情报_家具招投标": 0
- }
- # 统计ES数据
- for doc in data_es:
- if 'es_bidding' in doc:
- es_bidding_count += doc['es_bidding'].get('count', 0)
- if 'es_bidding_ai' in doc:
- es_bidding_ai_count += doc['es_bidding_ai'].get('count', 0)
- if 'es_nzj' in doc:
- es_nzj_count += doc['es_nzj'].get('count', 0)
- if 'es_bidding_fragment' in doc:
- for key, value in doc['es_bidding_fragment'].get('count', {}).items():
- if key in es_bidding_fragment_data:
- es_bidding_fragment_data[key] += value
- # ----------------- 第三个Sheet: 数据时效监控 -------------------
- # 查询过去一周的数据(数据时效监控)
- pipeline_timeliness = [
- {
- "$match": {
- "data_timeliness.timestamp": {
- "$gte": start_timestamp, # 使用整数Unix时间戳
- "$lt": end_timestamp # 使用整数Unix时间戳
- }
- }
- },
- {
- "$limit": 5 # 限制查询返回的结果为前5条数据,便于调试
- }
- ]
- # 获取符合条件的数据
- data_timeliness = list(collection.aggregate(pipeline_timeliness))
- # 初始化字段统计数据
- timeliness_data = {
- "[0,5)分钟": 0,
- "[5,15)分钟": 0,
- "[15,30)分钟": 0,
- "[30,60)分钟": 0,
- "[1,3)小时": 0,
- "[3,7)小时": 0,
- "[7,15)小时": 0,
- "[15,24)小时": 0,
- "[1,2)天": 0,
- "[2,3)天": 0,
- "3天+": 0
- }
- # 统计数据
- for doc in data_timeliness:
- if 'data_timeliness' in doc:
- count_data = doc['data_timeliness'].get('count', {})
- timeliness_data["[0,5)分钟"] += float(count_data.get("a1", "0%").replace('%', ''))
- timeliness_data["[5,15)分钟"] += float(count_data.get("a2", "0%").replace('%', ''))
- timeliness_data["[15,30)分钟"] += float(count_data.get("a3", "0%").replace('%', ''))
- timeliness_data["[30,60)分钟"] += float(count_data.get("a4", "0%").replace('%', ''))
- timeliness_data["[1,3)小时"] += float(count_data.get("a5", "0%").replace('%', ''))
- timeliness_data["[3,7)小时"] += float(count_data.get("a6", "0%").replace('%', ''))
- timeliness_data["[7,15)小时"] += float(count_data.get("a7", "0%").replace('%', ''))
- timeliness_data["[15,24)小时"] += float(count_data.get("a8", "0%").replace('%', ''))
- timeliness_data["[1,2)天"] += float(count_data.get("a9", "0%").replace('%', ''))
- timeliness_data["[2,3)天"] += float(count_data.get("a10", "0%").replace('%', ''))
- timeliness_data["3天+"] += float(count_data.get("a11", "0%").replace('%', ''))
- # 获取当前时间的一周时间范围字符串
- date_range = f"{start_time.strftime('%Y/%m/%d')}-{end_time.strftime('%Y/%m/%d')}"
- # 构建Excel数据
- columns = ['日期', '标讯每周入库数据量', '高质量库每周入库数据量', '人脉管理数据', '拟在建数据量(全国)'] + list(bidding_fragment_data.keys())
- data_row_mongo = [date_range, bidding_count, bidding_ai_count, connections_count, nzj_count] + list(bidding_fragment_data.values())
- columns_es = ['日期', '标讯每周入库数据量', '高质量库每周数据入库量', '拟在建数据量(全国)'] + list(es_bidding_fragment_data.keys())
- data_row_es = [date_range, es_bidding_count, es_bidding_ai_count, es_nzj_count] + list(es_bidding_fragment_data.values())
- columns_timeliness = ['日期'] + list(timeliness_data.keys())
- data_row_timeliness = [date_range] + list(timeliness_data.values())
- # 创建DataFrame并写入Excel
- excel_file = 'mongo_data_statistics_combined1.xlsx'
- with pd.ExcelWriter(excel_file, engine='openpyxl') as writer:
- # 写入第一个sheet(断流监控_mongo库)
- df_mongo = pd.DataFrame([data_row_mongo], columns=columns)
- df_mongo.to_excel(writer, sheet_name='入库数据量监控-mongo(每周)', index=False)
- # 写入第二个sheet(断流监控—es)
- df_es = pd.DataFrame([data_row_es], columns=columns_es)
- df_es.to_excel(writer, sheet_name='入库量数据量监控-es(每周)', index=False)
- # 将timeliness_data中的值转换为百分比字符串
- for key in timeliness_data:
- timeliness_data[key] = f"{timeliness_data[key]:.2f}%"
- # 构建数据行
- data_row_timeliness = [date_range] + list(timeliness_data.values())
- # 写入第三个sheet(数据时效监控)
- df_timeliness = pd.DataFrame([data_row_timeliness], columns=columns_timeliness)
- df_timeliness.to_excel(writer, sheet_name='数据时效监控(7天平均值)', index=False)
- print(f"统计结果已写入Excel文件: {excel_file}")
|