from datetime import datetime import pandas as pd import numpy as np from pymongo import MongoClient from openpyxl import load_workbook #高质量字段以及错误原因 # 将这个函数定义放在你的脚本顶部或其他函数定义附近 def convert_numpy_int(obj): if isinstance(obj, np.int64): return int(obj) elif isinstance(obj, dict): return {key: convert_numpy_int(value) for key, value in obj.items()} elif isinstance(obj, list): return [convert_numpy_int(elem) for elem in obj] else: return obj # MongoDB连接配置 host = '192.168.3.149' # MongoDB主机地址 port = 27180 # MongoDB端口 dbname = 'data_quality' # 数据库名称 collection_name = 'bidding_20241219_ai' # 集合名称 # 创建MongoDB连接 client = MongoClient(host, port) db = client[dbname] collection = db[collection_name] # 定义字段中英文映射 column_name_mapping = { "area_qa": "省份", "bidamount_qa": "中标金额", "budget_qa": "预算", "buyer_qa": "采购单位", "multipackage_qa": "分包", "projectcode_qa": "项目编号", "projectname_qa": "项目名称", "title_qa": "标题", "winner_qa": "中标单位", "score": "标讯总分数", "bidopentime_qa": "开标时间", "publishtime_qa": "发布时间", "toptype_qa": "信息一级分类", "subtype_qa": "信息二级分类" } # 从MongoDB读取数据 data = pd.DataFrame(list(collection.find({},{k:1 for k,v in column_name_mapping.items()}))) # 选择字段名以 '_qa' 结尾的列 qa_columns = [col for col in data.columns if col.endswith('_qa')] # 仅保留 '_qa' 结尾的字段,并进行列名映射 data = data[qa_columns] data.rename(columns=column_name_mapping, inplace=True) # 输出当前的数据列名 print("当前的列名:") print(data.columns) # analyze_column 函数,处理 NaN 值 def analyze_column(dataframe, column_name): if column_name not in dataframe.columns: total = len(dataframe) correct = total error = 0 else: total = len(dataframe[column_name]) correct = dataframe[column_name].apply(lambda x: pd.isna(x) or x == {}).sum() error = total - correct accuracy = correct / total if total > 0 else 0 error_rate = error / total if total > 0 else 0 # 收集错误原因 error_reasons = dataframe[column_name].apply( lambda x: x if x != {} and not pd.isna(x) else None).dropna().value_counts() return total, correct, error, accuracy, error_rate, error_reasons # 重新格式化错误原因的数据结构 def reformat_error_reasons_safe(error_reasons_series): reformatted_reasons = {} for error_dict, count in error_reasons_series.items(): if isinstance(error_dict, dict): # 如果是字典类型的错误原因 for error_code, reason in error_dict.items(): if ',' in reason: parts = reason.split(',') formatted_reason = parts[1].strip() else: formatted_reason = reason.strip() if formatted_reason: key = (formatted_reason,) if key not in reformatted_reasons: reformatted_reasons[key] = count else: reformatted_reasons[key] += count elif isinstance(error_dict, list): # 如果是列表类型的错误原因 key = (tuple(error_dict),) if error_dict else None if key not in reformatted_reasons: reformatted_reasons[key] = count else: reformatted_reasons[key] += count else: # 其他类型的错误原因 key = (error_dict,) if error_dict else None if key not in reformatted_reasons: reformatted_reasons[key] = count else: reformatted_reasons[key] += count formatted_results = { str(key[0]): value for key, value in reformatted_reasons.items() if key and key[0] != '' } return formatted_results # 对每个字段进行分析 fields_to_analyze = data.columns # 直接使用已选定的 '_qa' 字段 expanded_analysis_results = [] for col in fields_to_analyze: total, correct, error, accuracy, error_rate, error_reasons = analyze_column(data, col) reformatted_error_reasons = reformat_error_reasons_safe(error_reasons) for reason, count in reformatted_error_reasons.items(): reason = str(reason).replace('(', '').replace(',)', '').replace("'", '') if error > 0: single_reason_error_rate = count / error else: single_reason_error_rate = 0 # 防止除以零的情况 expanded_analysis_results.append({ '字段': col, '总量': total, '正确数量': correct, '错误数量': error, '正确率': f'{accuracy:.2%}', '错误率': f'{error_rate:.2%}', '错误原因': reason, '错误次数': count, '单个原因错误率': f'{single_reason_error_rate:.2%}' }) # 创建DataFrame并进行写入操作 expanded_analysis_results_df = pd.DataFrame(expanded_analysis_results) # 使用 pd.ExcelWriter 进行写入操作 with pd.ExcelWriter('临时文件.xlsx', engine='openpyxl') as writer: # 将分析结果写入Excel expanded_analysis_results_df.to_excel(writer, sheet_name='字段分析结果', index=False) # 假设您的分析结果已经保存在一个临时文件中 temp_analysis_file = '临时文件.xlsx' # 临时文件的路径 # 加载您想要合并结果到的Excel文件 modified_file_path = 'pin.xlsx' # 拼接文件路径 wb = load_workbook(modified_file_path) # 加载包含分析结果的临时Excel文件 temp_wb = load_workbook(temp_analysis_file) # 将临时文件中的工作表复制到修改过的文件中 for sheet_name in temp_wb.sheetnames: source = temp_wb[sheet_name] target = wb.create_sheet(sheet_name) for row in source.iter_rows(min_row=1, max_col=source.max_column, max_row=source.max_row, values_only=True): target.append(row) # 保存最终的合并文件 final_merged_file_path = '质量分析报告.xlsx' # 最终合并文件的路径 wb.save(final_merged_file_path) # 关闭MongoDB连接 client.close()