liumiaomiao 5 месяцев назад
Родитель
Сommit
0c63fb1f7b

+ 0 - 0
tools/mongo,es断流监控/es_monitor.py → tools/周报/mongo,es断流监控/es_monitor.py


+ 0 - 0
tools/mongo,es断流监控/mongo_monitor.py → tools/周报/mongo,es断流监控/mongo_monitor.py


+ 1 - 1
tools/周报表格导出/DataExport_forTesting.py → tools/周报/周报表格导出/DataExport_forTesting.py

@@ -209,7 +209,7 @@ columns_timeliness = ['日期'] + list(timeliness_data.keys())
 data_row_timeliness = [date_range] + list(timeliness_data.values())
 
 # 创建DataFrame并写入Excel
-excel_file = '../周报表格导出/mongo_data_statistics_combined1.xlsx'
+excel_file = '/mongo_data_statistics_combined1.xlsx'
 
 with pd.ExcelWriter(excel_file, engine='openpyxl') as writer:
     # 写入第一个sheet(断流监控_mongo库)

+ 116 - 0
tools/周报/基于bid_analysis表字段分析结果.py

@@ -0,0 +1,116 @@
+from datetime import datetime
+import pandas as pd
+from pymongo import MongoClient
+from openpyxl import load_workbook
+
+# MongoDB连接配置
+host = '172.20.45.129'
+port = 27002
+dbname = 'data_quality'
+collection_name = 'bid_analysis'
+
+# 创建MongoDB连接
+client = MongoClient(host, port)
+db = client[dbname]
+collection = db[collection_name]
+
+# 从MongoDB读取数据并筛选出 create_time 等于 1739289600 的记录
+query = {"create_time": 1740585600}
+data = pd.DataFrame(list(collection.find(query)))
+
+# 定义字段中英文映射(无需移除 '_qa' 后缀)
+column_name_mapping = {
+    "area_qa": "省份",
+    "bidamount_qa": "中标金额",
+    "budget_qa": "预算",
+    "buyer_qa": "采购单位",
+    "com_package_qa": "分包",
+    "projectcode_qa": "项目编号",
+    "projectname_qa": "项目名称",
+    "title_qa": "标题",
+    "winner_qa": "中标单位",
+    "score": "标讯总分数",
+    "bidopentime_qa": "开标时间",
+    "publishtime_qa": "发布时间",
+    "toptype_qa": "信息一级分类",
+    "subtype_qa": "信息二级分类"
+}
+
+# 将字段名称更改为中文
+data.rename(columns=column_name_mapping, inplace=True)
+
+# 提取需要分析的字段(使用中文列名)
+qa_fields = ["标题", "项目名称", "中标单位", "项目编号", "采购单位", "中标金额", "省份","分包"]
+
+# 确保 error_type 字段存在
+if "error_type" in data.columns:
+    # 提取每个字段的错误信息,空字典 {} 设为 None(正确)
+    for qa_field in qa_fields:
+        # 反向映射中文列名到原始英文名(用于从 error_type 提取数据)
+        english_field = next(k for k, v in column_name_mapping.items() if v == qa_field)
+        data[qa_field] = data['error_type'].apply(
+            lambda x: x.get(english_field) if isinstance(x, dict) and x.get(english_field) != {} else None
+        )
+
+    # 提取标讯总分数
+    data['标讯总分数'] = data['error_type'].apply(
+        lambda x: x.get("score") if isinstance(x, dict) else None
+    )
+    data['标讯总分数'] = pd.to_numeric(data['标讯总分数'], errors='coerce')
+
+
+# 分析函数(保持不变)
+def analyze_column(dataframe, column_name):
+    if column_name not in dataframe.columns:
+        return 0, 0, 0, 0, 0, pd.Series(dtype='object')
+
+    field_series = dataframe[column_name]
+    total = len(field_series)
+    correct = field_series.isna().sum()  # NaN 表示正确(空字典 {} 已映射为 None)
+    error = total - correct
+    accuracy = correct / total if total > 0 else 0
+    error_rate = error / total if total > 0 else 0
+    error_reasons = field_series.dropna().value_counts()
+
+    return total, correct, error, accuracy, error_rate, error_reasons
+
+
+# 分析结果存储(保持不变)
+expanded_analysis_results = []
+for qa_field in qa_fields:
+    total, correct, error, accuracy, error_rate, error_reasons = analyze_column(data, qa_field)
+    for reason, count in error_reasons.items():
+        expanded_analysis_results.append({
+            '字段': qa_field,
+            '总量': total,
+            '正确数量': correct,
+            '错误数量': error,
+            '正确率': f'{accuracy:.2%}',
+            '错误率': f'{error_rate:.2%}',
+            '错误原因': reason,
+            '错误次数': count
+        })
+
+# 转换为 DataFrame
+expanded_analysis_results_df = pd.DataFrame(expanded_analysis_results)
+
+# 后续写入 Excel 的代码保持不变
+
+
+# 分数分析
+score_distribution_df = pd.DataFrame()
+if "标讯总分数" in data.columns:
+    score_counts = data['标讯总分数'].value_counts().sort_index()
+    total_scores = len(data['标讯总分数'])
+    score_percentages = (score_counts / total_scores).apply(lambda x: f'{x:.2%}')
+    score_distribution_df = pd.DataFrame({
+        '分数': score_counts.index,
+        '数量': score_counts.values,
+        '占比': score_percentages
+    })
+
+# 写入Excel
+with pd.ExcelWriter('质量分析报告.xlsx', engine='openpyxl') as writer:
+    expanded_analysis_results_df.to_excel(writer, sheet_name='字段分析结果', index=False)
+    if not score_distribution_df.empty:
+        score_distribution_df.to_excel(writer, sheet_name='分数分析结果', index=False)

+ 0 - 0
tools/数据时效监控/data_timeliness.py → tools/周报/数据时效监控/data_timeliness.py


BIN
tools/周报表格导出/mongo_data_statistics_combined1.xlsx