123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222 |
- # 导入所需库
- import pandas as pd
- from pymongo import MongoClient
- from openpyxl import load_workbook
- # MongoDB连接配置
- host = '192.168.3.206' # MongoDB主机地址
- port = 27080 # MongoDB端口
- dbname = 'data_quality' # 数据库名称
- collection_name = 'bidding_20231228' # 集合名称
- # 创建MongoDB连接
- client = MongoClient(host, port)
- db = client[dbname]
- collection = db[collection_name]
- # 从MongoDB读取数据
- data = pd.DataFrame(list(collection.find()))
- # 定义字段中英文映射
- column_name_mapping = {
- "area_qa": "省份",
- "bidamount_qa": "中标金额",
- "budget_qa": "预算",
- "buyer_qa": "采购单位",
- "multipackage_qa": "分包",
- "projectcode_qa": "项目编号",
- "projectname_qa": "项目名称",
- "title_qa": "标题",
- "winner_qa": "中标单位",
- "score": "标讯总分数",
- "bidopentime_qa": "开标时间",
- "publishtime_qa": "发布时间",
- "toptype_qa": "信息一级分类",
- "subtype_qa": "信息二级分类"
- }
- # 将字段名称更改为中文
- data.rename(columns=column_name_mapping, inplace=True)
- # 打印语句来检查 '一级分类' 和 '二级分类' 字段的值
- print("一级分类字段值分布:")
- print(data['信息一级分类'].value_counts(dropna=False))
- print("\n二级分类字段值分布:")
- print(data['信息二级分类'].value_counts(dropna=False))
- # 关闭MongoDB连接
- client.close()
- # analyze_column 函数,处理 NaN 值
- def analyze_column(dataframe, column_name):
- if column_name not in dataframe.columns:
- # 字段不存在时,认为所有记录都是正确的
- total = len(dataframe)
- correct = total
- error = 0
- else:
- # 对于存在的字段,NaN 和空字典 {} 视为正确,其他视为错误
- total = len(dataframe[column_name])
- correct = dataframe[column_name].apply(lambda x: pd.isna(x) or x == {}).sum()
- error = total - correct
- accuracy = correct / total if total > 0 else 0
- error_rate = error / total if total > 0 else 0
- # 收集错误原因
- error_reasons = dataframe[column_name].apply(
- lambda x: x if x != {} and not pd.isna(x) else None).dropna().value_counts()
- return total, correct, error, accuracy, error_rate, error_reasons
- # 重新格式化错误原因的数据结构
- def reformat_error_reasons_safe(error_reasons_series):
- # 初始化一个空字典,用于存储重新格式化的错误原因
- reformatted_reasons = {}
- # 遍历错误原因字典及其对应的次数
- for error_dict, count in error_reasons_series.items():
- if isinstance(error_dict, dict): # 如果是字典类型的错误原因
- for error_code, reason in error_dict.items():
- # 检查原因字符串是否包含逗号
- if ',' in reason:
- parts = reason.split(',')
- formatted_reason = parts[1].strip()
- else:
- formatted_reason = reason.strip()
- # 如果格式化后的原因非空,则构建键值对并更新字典
- if formatted_reason:
- key = (formatted_reason,)
- if key not in reformatted_reasons:
- reformatted_reasons[key] = count
- else:
- reformatted_reasons[key] += count
- elif isinstance(error_dict, list): # 如果是列表类型的错误原因
- key = (tuple(error_dict),) if error_dict else None
- if key not in reformatted_reasons:
- reformatted_reasons[key] = count
- else:
- reformatted_reasons[key] += count
- else: # 其他类型的错误原因
- key = (error_dict,) if error_dict else None
- if key not in reformatted_reasons:
- reformatted_reasons[key] = count
- else:
- reformatted_reasons[key] += count
- # 构建最终格式化后的结果字典,去除空键和空字符串键
- formatted_results = {
- str(key[0]): value for key, value in reformatted_reasons.items() if key and key[0] != ''
- }
- return formatted_results
- # 对每个字段进行分析
- fields_to_analyze = ["省份", "中标金额", "预算", "采购单位", "分包", "项目编号", "项目名称", "标题", "中标单位",
- "开标时间", "发布时间", "信息一级分类", "信息二级分类"]
- expanded_analysis_results = []
- for col in fields_to_analyze:
- total, correct, error, accuracy, error_rate, error_reasons = analyze_column(data, col)
- chinese_name = column_name_mapping.get(col, col)
- reformatted_error_reasons = reformat_error_reasons_safe(error_reasons)
- for reason, count in reformatted_error_reasons.items():
- reason = str(reason).replace('(', '').replace(',)', '').replace("'", '')
- expanded_analysis_results.append({
- '字段': chinese_name,
- '总量': total,
- '正确数量': correct,
- '错误数量': error,
- '正确率': f'{accuracy:.2%}',
- '错误率': f'{error_rate:.2%}',
- '错误原因': reason,
- '错误次数': count
- })
- # 创建DataFrame并导出为Excel
- expanded_analysis_results_df = pd.DataFrame(expanded_analysis_results)
- # "标讯总分数" 字段的分布
- if "标讯总分数" in data.columns:
- # 转换为浮点数
- data['标讯总分数'] = data['标讯总分数'].astype(float)
- score_counts = data['标讯总分数'].value_counts().sort_index()
- total_scores = len(data['标讯总分数'])
- score_percentages = (score_counts / total_scores) * 100
- score_distribution_df = pd.DataFrame({
- '标讯总分数': score_counts.index,
- '数量': score_counts.values,
- '百分比': score_percentages.values
- })
- # 百分比格式化为字符串,并附加百分号
- score_distribution_df['百分比'] = score_distribution_df['百分比'].apply(lambda x: f'{x:.2f}%')
- # "purchasinglist" 下的 "score" 字段的分布
- if 'purchasinglist' in data.columns:
- # 提取 "score" 并转换为浮点数
- purchasinglist_scores = data['purchasinglist'].map(
- lambda x: float(x[0]['score']) if isinstance(x, list) and x and isinstance(x[0], dict) and 'score' in x[
- 0] else 0
- )
- purchasinglist_score_counts = purchasinglist_scores.value_counts().sort_index()
- purchasinglist_total_scores = purchasinglist_scores.notnull().sum()
- purchasinglist_score_percentages = (purchasinglist_score_counts / purchasinglist_total_scores) * 100
- purchasinglist_score_distribution_df = pd.DataFrame({
- '标的物分数': purchasinglist_score_counts.index,
- '数量': purchasinglist_score_counts.values,
- '百分比': purchasinglist_score_percentages.values
- })
- # 百分比格式化为字符串,并附加百分号
- purchasinglist_score_distribution_df['百分比'] = purchasinglist_score_distribution_df['百分比'].apply(
- lambda x: f'{x:.2f}%')
- # 对错误次数进行倒序排序
- expanded_analysis_results_df = expanded_analysis_results_df.sort_values(by='错误次数', ascending=False)
- # 使用 pd.ExcelWriter 进行写入操作
- with pd.ExcelWriter('临时文件.xlsx', engine='openpyxl') as writer:
- # 新建一个工作表 "分数分析结果"
- writer.sheets['分数分析结果'] = writer.book.create_sheet('分数分析结果')
- if "标讯总分数" in data.columns:
- # 添加总量列
- score_distribution_df['总量'] = total_scores
- # 对分数进行倒序排序
- score_distribution_df = score_distribution_df.sort_values(by='标讯总分数', ascending=False)
- score_distribution_df.to_excel(writer, sheet_name='分数分析结果', index=False)
- # 新建一列写入 "purchasinglist" 下的 "score" 分布
- if 'purchasinglist' in data.columns and purchasinglist_scores.notnull().any():
- # 注意这里的startcol参数,它应该基于您的实际数据列数来设置
- purchasinglist_score_distribution_df = purchasinglist_score_distribution_df.sort_values(by='标的物分数',
- ascending=False)
- purchasinglist_score_distribution_df.to_excel(writer, sheet_name='分数分析结果',
- startcol=len(score_distribution_df.columns) + 2, index=False)
- # 添加总量列
- purchasinglist_score_distribution_df['总量'] = purchasinglist_total_scores
- purchasinglist_score_distribution_df.to_excel(writer, sheet_name='分数分析结果',
- startcol=len(score_distribution_df.columns) + 2, index=False)
- expanded_analysis_results_df.to_excel(writer, sheet_name='字段分析结果', index=False)
- # 假设您的分析结果已经保存在一个临时文件中
- temp_analysis_file = '临时文件.xlsx' # 临时文件的路径
- # 加载您想要合并结果到的Excel文件
- modified_file_path = 'pin.xlsx' #拼接文件路径
- wb = load_workbook(modified_file_path)
- # 加载包含分析结果的临时Excel文件
- temp_wb = load_workbook(temp_analysis_file)
- # 将临时文件中的工作表复制到修改过的文件中
- for sheet_name in temp_wb.sheetnames:
- source = temp_wb[sheet_name]
- target = wb.create_sheet(sheet_name)
- for row in source.iter_rows(min_row=1, max_col=source.max_column, max_row=source.max_row, values_only=True):
- target.append(row)
- # 保存最终的合并文件
- final_merged_file_path = '质量分析报告.xlsx' # 最终合并文件的路径
- wb.save(final_merged_file_path)
|