result_export.py 10 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232
  1. # 导入所需库
  2. import pandas as pd
  3. from pymongo import MongoClient
  4. from openpyxl import load_workbook
  5. # MongoDB连接配置
  6. host = '192.168.3.206' # MongoDB主机地址
  7. port = 27080 # MongoDB端口
  8. dbname = 'data_quality' # 数据库名称
  9. collection_name = 'bidding_20231221' # 集合名称
  10. # 创建MongoDB连接
  11. client = MongoClient(host, port)
  12. db = client[dbname]
  13. collection = db[collection_name]
  14. # 从MongoDB读取数据
  15. data = pd.DataFrame(list(collection.find()))
  16. # 定义字段中英文映射
  17. column_name_mapping = {
  18. "area_qa": "省份",
  19. "bidamount_qa": "中标金额",
  20. "budget_qa": "预算",
  21. "buyer_qa": "采购单位",
  22. "multipackage_qa": "分包",
  23. "projectcode_qa": "项目编号",
  24. "projectname_qa": "项目名称",
  25. "title_qa": "标题",
  26. "winner_qa": "中标单位",
  27. "score": "标讯总分数",
  28. "bidopentime_qa": "开标时间",
  29. "publishtime_qa": "发布时间",
  30. "toptype_qa": "信息一级分类",
  31. "subtype_qa": "信息二级分类"
  32. }
  33. # 将字段名称更改为中文
  34. data.rename(columns=column_name_mapping, inplace=True)
  35. # 打印语句来检查 '一级分类' 和 '二级分类' 字段的值
  36. print("一级分类字段值分布:")
  37. print(data['信息一级分类'].value_counts(dropna=False))
  38. print("\n二级分类字段值分布:")
  39. print(data['信息二级分类'].value_counts(dropna=False))
  40. # 关闭MongoDB连接
  41. client.close()
  42. # analyze_column 函数,处理 NaN 值
  43. def analyze_column(dataframe, column_name, special=False):
  44. if column_name not in dataframe.columns:
  45. # 如果字段不存在,假设所有记录都是正确的
  46. total = len(dataframe)
  47. correct = total
  48. error = 0
  49. accuracy = 1.0
  50. error_rate = 0.0
  51. error_reasons = pd.Series()
  52. elif special:
  53. # 特殊字段逻辑:存在且非空为错误
  54. total = len(dataframe[column_name])
  55. # 对于特殊字段,NaN 和空字典 {} 视为正确
  56. correct = dataframe[column_name].apply(lambda x: pd.isna(x) or x == {}).sum()
  57. error = total - correct
  58. accuracy = correct / total
  59. error_rate = error / total
  60. error_reasons = dataframe[column_name].apply(
  61. lambda x: x if x != {} and not pd.isna(x) else None).dropna().value_counts()
  62. else:
  63. # 常规字段逻辑
  64. total = len(dataframe[column_name])
  65. correct = dataframe[column_name].apply(lambda x: x == {}).sum()
  66. error = total - correct
  67. accuracy = correct / total
  68. error_rate = error / total
  69. error_reasons = dataframe[column_name].apply(lambda x: x if x != {} else None).dropna().value_counts()
  70. return total, correct, error, accuracy, error_rate, error_reasons
  71. # 重新格式化错误原因的数据结构
  72. def reformat_error_reasons_safe(error_reasons_series):
  73. # 初始化一个空字典,用于存储重新格式化的错误原因
  74. reformatted_reasons = {}
  75. # 遍历错误原因字典及其对应的次数
  76. for error_dict, count in error_reasons_series.items():
  77. if isinstance(error_dict, dict): # 如果是字典类型的错误原因
  78. for error_code, reason in error_dict.items():
  79. # 检查原因字符串是否包含逗号
  80. if ',' in reason:
  81. parts = reason.split(',')
  82. formatted_reason = parts[1].strip()
  83. else:
  84. formatted_reason = reason.strip()
  85. # 如果格式化后的原因非空,则构建键值对并更新字典
  86. if formatted_reason:
  87. key = (formatted_reason,)
  88. if key not in reformatted_reasons:
  89. reformatted_reasons[key] = count
  90. else:
  91. reformatted_reasons[key] += count
  92. elif isinstance(error_dict, list): # 如果是列表类型的错误原因
  93. key = (tuple(error_dict),) if error_dict else None
  94. if key not in reformatted_reasons:
  95. reformatted_reasons[key] = count
  96. else:
  97. reformatted_reasons[key] += count
  98. else: # 其他类型的错误原因
  99. key = (error_dict,) if error_dict else None
  100. if key not in reformatted_reasons:
  101. reformatted_reasons[key] = count
  102. else:
  103. reformatted_reasons[key] += count
  104. # 构建最终格式化后的结果字典,去除空键和空字符串键
  105. formatted_results = {
  106. str(key[0]): value for key, value in reformatted_reasons.items() if key and key[0] != ''
  107. }
  108. return formatted_results
  109. # 对每个字段进行分析
  110. fields_to_analyze = ["省份", "中标金额", "预算", "采购单位", "分包", "项目编号", "项目名称", "标题", "中标单位",
  111. "开标时间", "发布时间", "信息一级分类", "信息二级分类"]
  112. expanded_analysis_results = []
  113. for col in fields_to_analyze:
  114. total, correct, error, accuracy, error_rate, error_reasons = analyze_column(data, col,col in ['信息一级分类', '信息二级分类'])
  115. chinese_name = column_name_mapping.get(col, col)
  116. reformatted_error_reasons = reformat_error_reasons_safe(error_reasons)
  117. for reason, count in reformatted_error_reasons.items():
  118. # 将错误原因转换为字符串,并去除括号和引号
  119. reason = str(reason).replace('(', '').replace(',)', '').replace("'", '')
  120. expanded_analysis_results.append({
  121. '字段': chinese_name,
  122. '总量': total,
  123. '正确数量': correct,
  124. '错误数量': error,
  125. '正确率': f'{accuracy:.2%}',
  126. '错误率': f'{error_rate:.2%}',
  127. '错误原因': reason,
  128. '错误次数': count
  129. })
  130. # 创建DataFrame并导出为Excel
  131. expanded_analysis_results_df = pd.DataFrame(expanded_analysis_results)
  132. # "标讯总分数" 字段的分布
  133. if "标讯总分数" in data.columns:
  134. # 转换为浮点数
  135. data['标讯总分数'] = data['标讯总分数'].astype(float)
  136. score_counts = data['标讯总分数'].value_counts().sort_index()
  137. total_scores = len(data['标讯总分数'])
  138. score_percentages = (score_counts / total_scores) * 100
  139. score_distribution_df = pd.DataFrame({
  140. '标讯总分数': score_counts.index,
  141. '数量': score_counts.values,
  142. '百分比': score_percentages.values
  143. })
  144. # 百分比格式化为字符串,并附加百分号
  145. score_distribution_df['百分比'] = score_distribution_df['百分比'].apply(lambda x: f'{x:.2f}%')
  146. # "purchasinglist" 下的 "score" 字段的分布
  147. if 'purchasinglist' in data.columns:
  148. # 提取 "score" 并转换为浮点数
  149. purchasinglist_scores = data['purchasinglist'].map(
  150. lambda x: float(x[0]['score']) if isinstance(x, list) and x and isinstance(x[0], dict) and 'score' in x[
  151. 0] else 0
  152. )
  153. purchasinglist_score_counts = purchasinglist_scores.value_counts().sort_index()
  154. purchasinglist_total_scores = purchasinglist_scores.notnull().sum()
  155. purchasinglist_score_percentages = (purchasinglist_score_counts / purchasinglist_total_scores) * 100
  156. purchasinglist_score_distribution_df = pd.DataFrame({
  157. '标的物分数': purchasinglist_score_counts.index,
  158. '数量': purchasinglist_score_counts.values,
  159. '百分比': purchasinglist_score_percentages.values
  160. })
  161. # 百分比格式化为字符串,并附加百分号
  162. purchasinglist_score_distribution_df['百分比'] = purchasinglist_score_distribution_df['百分比'].apply(
  163. lambda x: f'{x:.2f}%')
  164. # 对错误次数进行倒序排序
  165. expanded_analysis_results_df = expanded_analysis_results_df.sort_values(by='错误次数', ascending=False)
  166. # 使用 pd.ExcelWriter 进行写入操作
  167. with pd.ExcelWriter('临时文件.xlsx', engine='openpyxl') as writer:
  168. # 新建一个工作表 "分数分析结果"
  169. writer.sheets['分数分析结果'] = writer.book.create_sheet('分数分析结果')
  170. if "标讯总分数" in data.columns:
  171. # 添加总量列
  172. score_distribution_df['总量'] = total_scores
  173. # 对分数进行倒序排序
  174. score_distribution_df = score_distribution_df.sort_values(by='标讯总分数', ascending=False)
  175. score_distribution_df.to_excel(writer, sheet_name='分数分析结果', index=False)
  176. # 新建一列写入 "purchasinglist" 下的 "score" 分布
  177. if 'purchasinglist' in data.columns and purchasinglist_scores.notnull().any():
  178. # 注意这里的startcol参数,它应该基于您的实际数据列数来设置
  179. purchasinglist_score_distribution_df = purchasinglist_score_distribution_df.sort_values(by='标的物分数',
  180. ascending=False)
  181. purchasinglist_score_distribution_df.to_excel(writer, sheet_name='分数分析结果',
  182. startcol=len(score_distribution_df.columns) + 2, index=False)
  183. # 添加总量列
  184. purchasinglist_score_distribution_df['总量'] = purchasinglist_total_scores
  185. purchasinglist_score_distribution_df.to_excel(writer, sheet_name='分数分析结果',
  186. startcol=len(score_distribution_df.columns) + 2, index=False)
  187. expanded_analysis_results_df.to_excel(writer, sheet_name='字段分析结果', index=False)
  188. # 假设您的分析结果已经保存在一个临时文件中
  189. temp_analysis_file = '临时文件.xlsx' # 临时文件的路径
  190. # 加载您想要合并结果到的Excel文件
  191. modified_file_path = 'pin.xlsx' #拼接文件路径
  192. wb = load_workbook(modified_file_path)
  193. # 加载包含分析结果的临时Excel文件
  194. temp_wb = load_workbook(temp_analysis_file)
  195. # 将临时文件中的工作表复制到修改过的文件中
  196. for sheet_name in temp_wb.sheetnames:
  197. source = temp_wb[sheet_name]
  198. target = wb.create_sheet(sheet_name)
  199. for row in source.iter_rows(min_row=1, max_col=source.max_column, max_row=source.max_row, values_only=True):
  200. target.append(row)
  201. # 保存最终的合并文件
  202. final_merged_file_path = '数据质量分析报告.xlsx' # 最终合并文件的路径
  203. wb.save(final_merged_file_path)