liumiaomiao пре 1 година
родитељ
комит
5ce3dfd51d
2 измењених фајлова са 232 додато и 0 уклоњено
  1. BIN
      pin.xlsx
  2. 232 0
      result_export.py

+ 232 - 0
result_export.py

@@ -0,0 +1,232 @@
+# 导入所需库
+import pandas as pd
+from pymongo import MongoClient
+from openpyxl import load_workbook
+# MongoDB连接配置
+host = '192.168.3.206'  # MongoDB主机地址
+port = 27080  # MongoDB端口
+dbname = 'data_quality'  # 数据库名称
+collection_name = 'bidding_20231122'  # 集合名称
+
+# 创建MongoDB连接
+client = MongoClient(host, port)
+db = client[dbname]
+collection = db[collection_name]
+
+# 从MongoDB读取数据
+data = pd.DataFrame(list(collection.find().limit(1000)))
+
+# 定义字段中英文映射
+column_name_mapping = {
+    "area_qa": "省份",
+    "bidamount_qa": "中标金额",
+    "budget_qa": "预算",
+    "buyer_qa": "采购单位",
+    "multipackage_qa": "分包",
+    "projectcode_qa": "项目编号",
+    "projectname_qa": "项目名称",
+    "title_qa": "标题",
+    "winner_qa": "中标单位",
+    "score": "标讯总分数",
+    "bidopentime_qa": "开标时间",
+    "publishtime_qa": "发布时间",
+    "toptype_qa": "信息一级分类",
+    "subtype_qa": "信息二级分类"
+}
+
+# 将字段名称更改为中文
+data.rename(columns=column_name_mapping, inplace=True)
+# 打印语句来检查 '一级分类' 和 '二级分类' 字段的值
+print("一级分类字段值分布:")
+print(data['信息一级分类'].value_counts(dropna=False))
+print("\n二级分类字段值分布:")
+print(data['信息二级分类'].value_counts(dropna=False))
+# 关闭MongoDB连接
+client.close()
+#  analyze_column 函数,处理 NaN 值
+def analyze_column(dataframe, column_name, special=False):
+    if column_name not in dataframe.columns:
+        # 如果字段不存在,假设所有记录都是正确的
+        total = len(dataframe)
+        correct = total
+        error = 0
+        accuracy = 1.0
+        error_rate = 0.0
+        error_reasons = pd.Series()
+    elif special:
+        # 特殊字段逻辑:存在且非空为错误
+        total = len(dataframe[column_name])
+        # 对于特殊字段,NaN 和空字典 {} 视为正确
+        correct = dataframe[column_name].apply(lambda x: pd.isna(x) or x == {}).sum()
+        error = total - correct
+        accuracy = correct / total
+        error_rate = error / total
+        error_reasons = dataframe[column_name].apply(
+            lambda x: x if x != {} and not pd.isna(x) else None).dropna().value_counts()
+    else:
+        # 常规字段逻辑
+        total = len(dataframe[column_name])
+        correct = dataframe[column_name].apply(lambda x: x == {}).sum()
+        error = total - correct
+        accuracy = correct / total
+        error_rate = error / total
+        error_reasons = dataframe[column_name].apply(lambda x: x if x != {} else None).dropna().value_counts()
+
+    return total, correct, error, accuracy, error_rate, error_reasons
+
+# 重新格式化错误原因的数据结构
+def reformat_error_reasons_safe(error_reasons_series):
+    # 初始化一个空字典,用于存储重新格式化的错误原因
+    reformatted_reasons = {}
+
+    # 遍历错误原因字典及其对应的次数
+    for error_dict, count in error_reasons_series.items():
+        if isinstance(error_dict, dict):  # 如果是字典类型的错误原因
+            for error_code, reason in error_dict.items():
+                # 检查原因字符串是否包含逗号
+                if ',' in reason:
+                    parts = reason.split(',')
+                    formatted_reason = parts[1].strip()
+                else:
+                    formatted_reason = reason.strip()
+
+                # 如果格式化后的原因非空,则构建键值对并更新字典
+                if formatted_reason:
+                    key = (formatted_reason,)
+                    if key not in reformatted_reasons:
+                        reformatted_reasons[key] = count
+                    else:
+                        reformatted_reasons[key] += count
+        elif isinstance(error_dict, list):  # 如果是列表类型的错误原因
+            key = (tuple(error_dict),) if error_dict else None
+            if key not in reformatted_reasons:
+                reformatted_reasons[key] = count
+            else:
+                reformatted_reasons[key] += count
+        else:  # 其他类型的错误原因
+            key = (error_dict,) if error_dict else None
+            if key not in reformatted_reasons:
+                reformatted_reasons[key] = count
+            else:
+                reformatted_reasons[key] += count
+
+    # 构建最终格式化后的结果字典,去除空键和空字符串键
+    formatted_results = {
+        str(key[0]): value for key, value in reformatted_reasons.items() if key and key[0] != ''
+    }
+    return formatted_results
+
+
+# 对每个字段进行分析
+fields_to_analyze = ["省份", "中标金额", "预算", "采购单位", "分包", "项目编号", "项目名称", "标题", "中标单位",
+                     "开标时间", "发布时间", "信息一级分类", "信息二级分类"]
+expanded_analysis_results = []
+
+for col in fields_to_analyze:
+    total, correct, error, accuracy, error_rate, error_reasons = analyze_column(data, col,col in ['信息一级分类', '信息二级分类'])
+
+    chinese_name = column_name_mapping.get(col, col)
+    reformatted_error_reasons = reformat_error_reasons_safe(error_reasons)
+
+    for reason, count in reformatted_error_reasons.items():
+        # 将错误原因转换为字符串,并去除括号和引号
+        reason = str(reason).replace('(', '').replace(',)', '').replace("'", '')
+        expanded_analysis_results.append({
+            '字段': chinese_name,
+            '总量': total,
+            '正确数量': correct,
+            '错误数量': error,
+            '正确率': f'{accuracy:.2%}',
+            '错误率': f'{error_rate:.2%}',
+            '错误原因': reason,
+            '错误次数': count
+        })
+
+# 创建DataFrame并导出为Excel
+expanded_analysis_results_df = pd.DataFrame(expanded_analysis_results)
+
+# "标讯总分数" 字段的分布
+if "标讯总分数" in data.columns:
+    # 转换为浮点数
+    data['标讯总分数'] = data['标讯总分数'].astype(float)
+    score_counts = data['标讯总分数'].value_counts().sort_index()
+    total_scores = len(data['标讯总分数'])
+    score_percentages = (score_counts / total_scores) * 100
+    score_distribution_df = pd.DataFrame({
+        '标讯总分数': score_counts.index,
+        '数量': score_counts.values,
+        '百分比': score_percentages.values
+    })
+    # 百分比格式化为字符串,并附加百分号
+    score_distribution_df['百分比'] = score_distribution_df['百分比'].apply(lambda x: f'{x:.2f}%')
+
+# "purchasinglist" 下的 "score" 字段的分布
+if 'purchasinglist' in data.columns:
+    # 提取 "score" 并转换为浮点数
+    purchasinglist_scores = data['purchasinglist'].map(
+        lambda x: float(x[0]['score']) if isinstance(x, list) and x and isinstance(x[0], dict) and 'score' in x[
+            0] else 0
+    )
+
+    purchasinglist_score_counts = purchasinglist_scores.value_counts().sort_index()
+    purchasinglist_total_scores = purchasinglist_scores.notnull().sum()
+    purchasinglist_score_percentages = (purchasinglist_score_counts / purchasinglist_total_scores) * 100
+    purchasinglist_score_distribution_df = pd.DataFrame({
+        '标的物分数': purchasinglist_score_counts.index,
+        '数量': purchasinglist_score_counts.values,
+        '百分比': purchasinglist_score_percentages.values
+    })
+    # 百分比格式化为字符串,并附加百分号
+    purchasinglist_score_distribution_df['百分比'] = purchasinglist_score_distribution_df['百分比'].apply(
+        lambda x: f'{x:.2f}%')
+
+# 对错误次数进行倒序排序
+expanded_analysis_results_df = expanded_analysis_results_df.sort_values(by='错误次数', ascending=False)
+
+# 使用 pd.ExcelWriter 进行写入操作
+with pd.ExcelWriter('临时文件.xlsx', engine='openpyxl') as writer:
+    # 新建一个工作表 "分数分析结果"
+    writer.sheets['分数分析结果'] = writer.book.create_sheet('分数分析结果')
+    if "标讯总分数" in data.columns:
+        # 添加总量列
+        score_distribution_df['总量'] = total_scores
+        # 对分数进行倒序排序
+        score_distribution_df = score_distribution_df.sort_values(by='标讯总分数', ascending=False)
+        score_distribution_df.to_excel(writer, sheet_name='分数分析结果', index=False)
+
+    # 新建一列写入 "purchasinglist" 下的 "score" 分布
+    if 'purchasinglist' in data.columns and purchasinglist_scores.notnull().any():
+        # 注意这里的startcol参数,它应该基于您的实际数据列数来设置
+        purchasinglist_score_distribution_df = purchasinglist_score_distribution_df.sort_values(by='标的物分数',
+                                                                                                ascending=False)
+        purchasinglist_score_distribution_df.to_excel(writer, sheet_name='分数分析结果',
+                                                      startcol=len(score_distribution_df.columns) + 2, index=False)
+
+        # 添加总量列
+        purchasinglist_score_distribution_df['总量'] = purchasinglist_total_scores
+        purchasinglist_score_distribution_df.to_excel(writer, sheet_name='分数分析结果',
+                                                      startcol=len(score_distribution_df.columns) + 2, index=False)
+
+    expanded_analysis_results_df.to_excel(writer, sheet_name='字段分析结果', index=False)
+
+# 假设您的分析结果已经保存在一个临时文件中
+temp_analysis_file = '临时文件.xlsx'  # 临时文件的路径
+
+# 加载您想要合并结果到的Excel文件
+modified_file_path = 'pin.xlsx'  #拼接文件路径
+wb = load_workbook(modified_file_path)
+
+# 加载包含分析结果的临时Excel文件
+temp_wb = load_workbook(temp_analysis_file)
+
+# 将临时文件中的工作表复制到修改过的文件中
+for sheet_name in temp_wb.sheetnames:
+    source = temp_wb[sheet_name]
+    target = wb.create_sheet(sheet_name)
+
+    for row in source.iter_rows(min_row=1, max_col=source.max_column, max_row=source.max_row, values_only=True):
+        target.append(row)
+
+# 保存最终的合并文件
+final_merged_file_path = '数据质量分析报告.xlsx'  # 最终合并文件的路径
+wb.save(final_merged_file_path)